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SMALL-SAMPLE PROPERTIES OF KERNEL DENSITY

ESTIMATORS FROM RANDOMLY RIGHT-CENSORED DATA

by

W. J. Padgett D. T. McNichols
Department of Mathematics Department of Statistics

and Statistics Virginia Polytechnic Institute
University of South Carolina and State University

Columbia, S. C. 29208 Blacksburg, Virginia 24061

ABSTRACT

The small-sample behavior of two kernel-type density estimators which

have been proposed in the literature for randomly right-censored samples is

investigated via Monte Carlo simulations. The extensive simulation study was

performed for five families of life distributions, two different cnsoring

distributions, three kernel functions, and several bandwidth sequeces and for

*sample sizes from n=20 to n=300. The simulation results reinforce previous

theoretical results for the estimators and lead to conjectures abot their

general behavior asymptotically as well as for small samples. A comparison of

-- the two density estimators is also indicated.
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1. INTRODUCTION

Density estimation is a very important topic in applied, as well as

*. theoretical, statistics. In particular, nonparametric procedures for estimating

an unknown density are extremely useful in determining the characteristics of a

statistical population being sampled and have direct applications ir, many

inference problems. The modern methods of nonparametric density e': Iiation

have been developed since the early 1950's and lead to smooth estiwnies which

are more suitable for inference than simple histogram estimates. Most of these

estimators were based on complete samples, that is, random sample,; of size n

from the unknown density. There have been several reviews written which give

extensive bibliographies of results on nonparametric density estimation from

complete samples. For example, see Wegman (1972 a,b), Fryer (1977), Tapia and

Thompson (1978), Wertz and Schneider (1979), and Bean and Tsokos (1980).

Recently, density estimation from incomplete or censored sampler has

received a great deal of attention. Right-censored observations arise in many

life testing situations and are very common in survival analysis (Lagakos, 1979).

Such data occur often in medical trials when patients may enter treatment at

different times and then either die from the disease, or cause, under investiga-

tion or leave the study before it is terminated (move away or die from another

competing cause). Also, in industrial life testing, items may bc )eDmoved from

the study at various times for more extensive analysis or for other reasnons.

For such situations, it is of interest to obtain nonparametric estimatcs of

the density function of the lifetime variable based on the right-ceinsored data.

The development of such density (or related function) estimates has only

recently been considered, and a survey of known results was given by Padg.ti

and McNichols (1984). The developments for censored data have followed the
..
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same basic approaches as for the complete-sample case but generally present

greater mathematical difficulties.

Kernel density estimators from randomly right-censored data have been

-" studied by several authors. A kernel-type density estimator was proposed by Blum

and Susarla (1980) and its asymptotic properties were studied. In particular,

the asymptotic theory of the maximum deviation of their estimator was presented,

extending the results of Rosenblatt (1976) to the case of random right-censorship.

The strong consistency properties of the kernel estimator based on the product-

limit estimate of the distribution function were studied by F6ldes, Rejt6 and

Winter (1981). McNichols and Padgett (1981) obtained very complicated finite-

*- sample expressions for the kernel density estimator and showed that it was

asymptotically unbiased and that its variance approached zero as the sample size

increased, assuming the Koziol and Green (1976) model of random censorship.

Also, a modification of the kernel density estimator in which the bandwidth

depended on the data was proposed by McNichols and Padgett (1984). However,

only asymptotic properties were obtained in all of these results, except for

those by McNichols and Padgett (1981) with respect to the Koziol-Green model

* which is somewhat restrictive in practice.

It is the purpose of this paper to study, by fairly extensive Monte

Carlo simulations, the finite-sample behavior of kernel density estimators

based on randomly right-censored data. The simulation study was performed since

it is very difficult, if not impossible, to obtain (even approximate) expressioalo;

for the biases, mean-squared errors, variances, and sampling distributions of

such estimators for finite sample sizes under general nonrestrictive conditions.

Several different families of lifetime distributions, various types of censoring

distributions that are assumed in practice, various bandwidth sequences, and

three different kernel functions were used in the simulations. Since, for

S °.
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censored data, optimal bandwidth results analogous to those for complete

samples is not available, some attention is given in the simulations to the

behavior of the estimators with respect to the bandwidth.

Randomly right-censored data and the product-limit estimator will be

discussed in Section 2. The kernel density estimators that are to be studied

will be given in Section 3. The computer simulations will be described and

a representative proportion of the simulation results will be given in

Section 4. Finally, in Section 5 some conclusions concerning the small-sample

behavior of the kernel estimators studied will be stated or conjectured.

2. RANDOMLY RIGHT-CENSORED SAMPLES

Let X "0 X0,... , 0  denote the true survival times of n items or
1'2 n

individuals which are censored on the right by a sequence U1 ,U2 , ...Un

which in general may be either constants or random variables. It is assumed

that the X°'s are nonnegative independent identically distributed random
1

variables with common unknown distribution function F0 . For the problem of

density estimation, it is assumed that F°  is absolutely continuous with

density fo.

The observed right-censored data are denoted by the pairs (XiVA),

i1,.. . ,n, where

-1 if X° U.
X. = minJX,U.i, A =

1 10 if X0> U..
1 1

Thus, it is known which observations are times of failure or death and which

ones are censored or loss times. The nature of the censoring mechanism

depends on the U 's: (i) If Ul,...,Un are fixed constants, the observa-
i

tions are time-truncated. If all U's are equal to the same constant, then

.8.
ii.,1.-1. I .-
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the case of Type I censoring results. (ii) If all U. = X0r), the rh order

statistic of X1,... ,Xn, then the situation is that of simple Type II censoring.

(iii) If Ul, ...,Un  constitute a random sample from a distribution H (which

is usually unknown) and are independent of X X' then (XAi), i=l,2,...,n,

is called a randomly right-censored sample.

The random censorship model (iii) is assumed for the results presented

here. It is attractive because of its mathematical convenience. Assuming

this model, nl, ,An  are independent Bernoulli random variables and the

distribution function F of each X., i=l,...,n, is given by I-F = (l-F0 )(l-H).

"'b Under the Koziol and Green (1976) model of random censorship, which is the

proportional hazards assumption of Cox (1972), it is assumed that there is a

positive constant 0 such that 1-H = (l-F°). Then by a result of Chen,
. %.

Hollander, and Langberg (1982), the pairs (X0 ,Ui), i-l,...,n, follow the

proportional hazards model if and only if (Xl,... ,Xn) and (A,..,An) are

independent. This Koziol-Green model of random censorship arises in several

situations (Efron, 1967; Cs~rgo and Horvith, 1981; Chen, Hollander and

Langberg, 1982). Note that 0 is a censoring coefficient since

a = P(X. ; U.) = (1 + )-, which is the probability of an uncensored

observation.

Based on the censored sample (Xi,&i), i=1,... ,n, a popular estimator

of the survival probability S°(t) = 14 0 (t) at t _ 0 is the product. ,)uit

estimator, proposed by Kaplan and Meier (1958) as the "nonparametric maxiuuii

likelihood estimator" of S° . This estimator was shown to be "self-consistent

by Efron (1967).

Let (Z,A!.), i=l,...,n, denote the ordered X.'s along with their

corresponding A.'s. A value of the censored sample will be denoted by t.b
1

corresponding lower case letters (x,, i ) or (zi,6 i') for the unordered c,

*. 4
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ordered sample, respectively. The product-limit estimator of S°  is defined

by (Efron, 1967)

\"%" ^k-1 ni6.'
P""(t) = 1,i tZP n:t)Pn (n-) , t (Z k-lZk , k=2,...,n.

0-, t>Z.n

Denote the product-limit estimator of F0 (t) by Fn(t) n 1-P (t), and let.n n

s. denote the jump of P n(or Fn) at Z., that is,

I-P n (Z2) ,  j=l

S3 n=(j) - Pn(Zj+), j=2,...,n-I

_ Pn(Zn), j=n.

Note that s.=O if and only if 6j'=0, j < n, that is, if Z. is a

censored observation.

The product-limit estimator has played a central role in the analysis

of censored survival data (Miller, 1981), and its properties have been studied

extensively by many authors, for example, Breslow and Crowley (1974), Faldes,

Rejt6 and Winter (1980), and Wellner (1982).

3. THE KERNEL DENSITY ESTIMATORS

Since the work of Rosenblatt (1956) and Parzen (1962), kernel density

estimators have been perhaps the most popular density estimators used in

practice and have been studied extensively regarding their theoretical

".- ~ properties. Also, various modifications with respect to the bandwidth sequence

and kernel have been proposed. Until recently, all of the results were for

complete samples (see Fryer, 1977, or Bean and Tsokos, 1980). For randomly

}-.

-.. ........................
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right-censored data, the first results for kernel density estimati,_ 11! not

appear until 1980.

Blum and Susarla (1980) generalized the complete-sample result--

Rosenblatt (1976) concerning maximum deviation of density estimates by the

kernel method. They obtained limit theorems for the maximum over a Uinite

interval of a normalized deviation of the density estimate when the oh';rvations

were censored on the right. The results were useful for goodness-oi Ci tests

and tests of hypothesis about the unknown lifetime density f . To d!_ nc

the Blum-Susarla estimator based on the randomly censored observations

(Xi,Ai), i=l,...,n, let {h-h(n)) be a positive sequence convergin l  ,- .ero

as n OD and let

N+(x) = number of X.'s > x

Define

n l+N +(X) Ij &=OX 5x]

j=l ( 2+N+ (Xj )

where I denotes the indicator function of the measurable set A. B y a
[A]

modification of the product-limit estimator, it can be shown that }f j;a

good estimate of the survival function for the censoring distribution,

H = 1-H (Blum and Susarla, 1980). For a kernel function K satisiyiug

certain conditions, the Blum-Susarla estimator is defined by

* n x-X.
I-- K h) 1[6 =I]f*(. 1 j=l C3

%n =nh Hx:',T-':' H (x )

0*
By following standard arguments, (f H )nX) =

-. s." (n) -I Xn  K((x-)/I and H*(x) can be shown to be good estimator:;j=l 16 j=] a n

of f°(x)H Cx) and H (x), respectively. This motivates the use ol (3 1)

as an estimator of f°(x).

r"

S ., .2 ,. . , . .. ; "." ¢ ,, . ¢ '.2 ,. . 2 ,W ,.. -": .g -g . e e e .. . . .. .g ,
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The main results of Blum and Susarla (1980) concern the asymptotic

distribution of
-I X'Xl)

If*(x) - [hH*(x)] EIK- 1
( nh)- sup

n ) Ox<1 [fo(x)/H* (x)Jk

under various conditions on fo, K, and H.

F61des, Rejt6 and Winter (1981) obtained strong convergence results

for the kernel density estimator

fn(x) = h-  ._K(Xj) dFn (t), (3.2)

which reduces to the usual Parzen (1962) density estimator in the ca, e of

0A

no censoring (since the product-limit estimator F reduces to the usual
n

empirical distribution function). Their results were obtained under various

0 0
conditions on H, F , f , and K, and they assumed that the bandwidth sequ'nce

{h(n)} was such that h(n) 4 0 but h(n)(n/log(n))1 /8 - as n 4 o.

McNichols and Padgett (1981) wrote (3.2) as

^ n x-Z.
f n(x) = h I s K(-- (3.3)

j=l

where Z. is the jth ordered observation and s. denotes the jump of
J .J

F at Z.. They considered the mean, variance, and mean-squared error of

(3.3) under the Koziol-Green model. Expressions for the mean and variance of

(3.3) at each x s- 0 were obtained and asymptotic unbiasedness and mean-square

convergence was shown with K and {h(n)} satisfying the usual Parzen (1962)

conditions. Note that the sums in both (3.1) and (3.3) only explicitly include

r.. the terms with uncensored observations although the censoring is treated

somewhat differently.

A- ,
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The small-sample properties of (3.1) and (3.3) have not been studied

previously, either analytically or by computer simulations, other than under

the restrictions of the Koziol-Green model (McNichols and Padgett, 1981).

In the next section, a rather extensive Monte Carlo simulation study of the

estimators (3.1) and (3.3) for small sample sizes will be described, and some

representative results will be presented.

%- It should be mentioned that a modification of f in which the bandwidth

h is data-driven has been given by McNichols and Padgett (1984). It was

shown that if h = h(X,.. .,Xn) is a "nearest neighbor" type function, then

the conditions for consistency of the modified estimator hold. Also, it should

be remarked that the data-based algorithms for choosing h in the complete

sample case discussed by Scott and Factor (1981) do not seem to be fruitful for

the case of censored samples. In particular, an expression similar to their

(2.4) (see also Parzen, 1962), and hence (2.10), is not available in the

- censored data case and seems to be extremely difficult to obtain (McNichols
.

and Padgett, 1981). A likelihood approach corresponding to their expression

(2.8) does not seem to be feasible either, since for censored data, the survival

function corresponding to f appears in the likelihood function. Hence, in

the simulation study described in the next section, some attention is given to

estimating the mean squared errors of the kernel estimators as a function of

various bandwidth values. This gives an indication of the range of va]uc:

. of h which tend to minimize mean squared errors of both (3.1) and (3.3) iij

the cases simulated.

4. THE MONTE CARLO SIMULATIONS

Simulations were performed for randomly right-censored samples gei aicd

from five different families of life distributions commonly used in the

0m .

e
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literature: exponential with mean , denoted E(P), gamma with parameters

a and , denoted G(Q,P), Weibull with density

f(x; a, ) = exp[-(x/P)a ] , x > 0, denoted W(a,p), lognormal

2
with mean exp(a + 2), denoted L(a,p), and inverse Gaussian with density

f(x; p, A) = [A/(2nx3)] exp[-A(x-p)2/(2p 2x)], x > 0, denoted IG(p,A).

Two different types of censoring distributions were utilized, exponential

thwith mean one and uniform on (O,t ), where t denotes the q percentileq q

of the life distribution, 0 < q < 100. Three different kernel functions K

were used, the standard normal density, the uniform density on 1-1,11, and

the triangular density on [-1,11,

K(x) =
0 , otherwise.

In addition, several bandwidth values h = h(n) were used in the study,

including h(n) = n-P  for various values of p.

The simulations represented in Tables 4.1-4.7 and 4.12-4.15 were based on

1,000 randomly right-censored samples each of size n for each choice of life

distribution, censoring distribution, kernel function, and bandwidth value for

n = 20, 50, 100, and 300. For each sample, the estimates (3.1) and (3.3) were

computed for values of t = 5th, 10th, 20th,...,9Oth, and 95th percentiles of

the censoring distribution (t values of 5th, 50th, and 95th percentiles only are

reported in these tables). At each t, the bias, mean squared error (MSE), and

variance of the estimators were estimated from the 1,000 computed values. Also,

the standard error of the estimate of MSE at each t was computed for each

estimator. The standard errors were bounded by 102.

The computer programs for the simulations were written in Fortran on

an Amdahl 470 V611 computer. The random number generators contained in the

S%



" 10

International Mathematical and Statistical Libraries (1980)(IKSL) package were

used in the generation of the required samples. Uniform random numbers were

generated from the IMSL subroutine GGUBS. IMSL subroutine GGEXN was used

for the exponential random numbers, GGAMR for gamma, GGWIB for Weibull, and

GGNLG for lognormal random numbers. To generate a value x from the inverse

Gaussian distribution, the procedure given by Michael, Schucany, and Haas (1976)

was used.

The Monte Carlo simulations were performed in the following manner:

A random sample X0,... ,X was generated from the life distribution, and a
n

random sample U1 ,... Un was generated from the censoring distribution. Next,

the randomly right-censored sample (Xi,Ai), i=l,...,n, was obtained by

X. = min[X0 ,U.l}, A. = 1 if X. = Xo and A. = 0 if X. = U.. The
I 1 1 1 1 1 1 1

. -values X, ... ,X were ordered to yield (Zi,Ai), i=l,...,n, and the
n *'

product-limit estimator was computed along with the jump size s. at

each Z.. The estimators f*(t) and fn(t) given by (3.1) and (3.3) were
n n

computed at the appropriate values of t. This entire procedure was repeated

for 1,000 randomly right-censored samples. The average biases, mean squared

errors, and variances as well as the standard errors (all were bounded by 10 )

of the estimated mean squared errors were computed for f*(t) and f (.) over
n Di

the 1,000 samples. The entire procedure was repeated for each sample siv, )jfr

distribution, censoring distribution, kernel function, and bandwidth value

mentioned before.

Some representative simulation results for f (t) are given in Tah]e ; 4.]

n

- 4.7. All of the results cannot be listed due to space limitations. All cuitie ;

in all tables are to be multiplied by 10- .

In the hope of gaining some insight into the behavior of f* and f will)
n I

respect to the bandwidth values h, several cases were simulated, using 200

S.

4-
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samples each (instead of 1000, due to computer time constraints), it which

the estimated MSE was obtained as a function of h. The estimated 1SE was

obtained for f* and f at values h = .05,(.05),.55. For samplP size
n n

n=50 and 100 some representative results are shown in Tables 4.8-4.11. Note

that the range of h values contains n -1 2 , n / 3 , and n" I/ 5 within the

boundaries for these sample sizes. The results indicate that f* and f tend
n n

to behave similarly with respect to MSE. Therefore, in order to indicate a

comparison of the behavior of f* and f as density estimators whn Lhe
n n

-"" same bandwidth values are used, some representative simulation resolir,; are

listed in Tables 4.12-4.15. In these tables a = P(an uncensored ob,.crvation)

=P(X0 <= U.)

5. CONCLUSIONS

Several conclusions concerning the small-sample behavior of thr hornel
A*

density estimators f and f can be stated based on the extensivc simola-
• .-'.-.n n

tions described in Section 4. In particular, the simulation result.; indicate.

the following for f The estimated variances of f t) increase as t.be
bandwidth sequence {h(n)} varies from n to n For h(n) = ,

the variances of f (t) decrease as n increases, but probably do not
n

converge to zero uniformly in t. For small values of t, the bias of

f n(t) is larger in magnitude than the biases for moderate to large vanev:

* of t. Overall, with respect to the criterion of mean squared error, for both

A -1/5f* and f with moderate to large t, h(n) = n appears to be the best
n n

choice for the bandwidth among the values h(n) = n p, p = 1/2, 1/3, 1/5,

-"-"-1/2 - 1/3whereas for small t, n or n appears better with respect to mcan

squared error (Tables 4.1-4.7). This is supported by the representative

results in Tables 4.8-4.11. Of the three kernel functions studied, the
F%_
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Table 4.8. Estimated MSE of Kernel Density Estimators

Life Distribution: E(l), Censoring Distribution: U(0,t
Kernel: N(0,1) .90

(All entries are to be multiplied by 1.OE-04.)

(a) n=50

p( h .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55

.10 a. 830 390 240 310 420 610 760 980 1130 1280 1450
(.23) b. 820 390 250 330 470 700 900 1160 1350 1530 1760

.25 a. 820 390 190 110 100 50 50 60 70 100 1400
(.58) b. 810 390 190 110 110 60 60 60 60 90 1410

.50 a. 600 330 200 140 100 100 60 50 50 50 40
(1.15) b. 540 310 190 140 110 110 80 80 100 110 130

- .75 a. 1590 700 290 230 170 130 90 100 90 70 80
(1.73) b. 720 290 180 130 110 130 90 90 140 230 240

.90 a. 2670 1110 750 440 290 180 150 110 80 70 70
(2.07) b. 290 200 150 120 100 60 50 50 120 100 160

(b) n=l00

.10 a. 500 190 120 200 340 550 740 960 1130 1300 1450
(.23) b. 510 200 120 220 400 640 880 1150 1350 1560 1750

.25 a. 380 140 90 60 50 30 30 40 60 90 130
(.58) b. 380 140 90 60 60 30 30 30 50 80 130

.50 a. 350 160 90 60 50 40 30 30 30 30 30
(1.15) b. 340 160 90 70 60 50 50 70 100 110 110

.75 a. 530 220 120 110 90 70 70 70 60 60 60
(1.73) b. 340 140 90 80 80 70 100 80 90 150 250

O .90 a. 2130 950 390 310 200 150 110 90 70 60 50
(2.07) b. 420 150 110 80 80 70 110 140 240 260 380

a. MSE f, b. MSE

n n
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* Table 4.9. Estimated MSE of Kernel Density Estimators

* Life Distribution: W(2,1), Censoring Distribution: U(0,t
Kernel: N(0,1) 90

i> (All entries are to be multiplied by 1.OE-04.)

(a) n=50

p h .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 55

(tP

.10 a. 390 150 100 80 80 60 70 70 60 60 60
(.15) b. 380 140 100 70 50 50 40 40 40 40 50

.25 a. 850 460 230 180 170 210 210 240 280 320 30
(.38) b. 850 460 260 250 290 430 480 600 740 870 980

* .50 a. 1880 810 400 240 240 220 290 350 460 600 770
- (.76) b. 1770 830 400 290 290 350 450 580 780 920 1130

.75 a. 3020 1230 580 290 170 120 50 40 30 60 100
* (1.14) b. 2150 770 680 440 350 750 640 620 470 850 48C

.90 a. 6280 1860 910 450 280 170 110 80 50 30 -,.0
(1.37) b. 1890 910 590 530 650 90 1250 1920 2550 3380 : 3';

(b) n=100

.10 a. 180 80 50 50 40 40 40 40 40 50 40
(.15) b. 180 80 50 50 30 30 20 30 30 30 40

.25 a. 510 230 130 100 120 150 180 230 270 330 380
(.38) b. 500 240 140 160 250 350 460 590 720 850 980

4, .50 a. 870 340 170 150 140 170 250 340 470 620 7,90
(76) b. 840 330 180 170 170 230 360 520 700 900 :000

": .75 a. 1100 620 340 160 110 60 30 20 30 50 90
- (1.14) b. 1020 510 400 260 300 400 390 420 420 350 330

.90 a. 3640 1410 520 320 190 110 80 50 30 20 }0
(1.37) b. 1350 610 640 840 1450 2760 3540 4720 7980 5760 '/00

. a. MSE f b. MSE f

1n

V,

o_
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Table 4.10. Estimated MSE of Kernel Density Estimators

.. Life Distribution: W(.5,1), Censoring Distribution: U(0,t.75 )
Kernel: N(0,1)

" (All entries are to be multiplied by .OE-04.)

(a) n=50

p h .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55

.10 a. 880 550 410 170 100 160 300 470 660 800 990
(.19) b. 900 640 500 200 120 160 290 490 690 860 1080

.25 a. 660 210 160 160 170 170 160 120 90 80 50
(.48) b. 640 210 170 200 260 320 300 260 180 160 100

.50 a. 440 200 150 130 90 60 70 110 120 170 190
(.96) b. 400 190 140 130 90 70 110 140 190 280 330

.75 a. 1540 530 520 430 390 360 330 330 310 270 270
(1.44) b. 600 220 160 130 110 70 60 100 130 240 300

.90 a. 7440 5040 2700 1930 1190 910 700 540 450 330 300
* . (1.73) b. 470 270 180 130 130 90 100 150 200 310 330

(b) n=l00

.10 a. 420 370 260 120 60 120 270 440 640 820 980
(.19) b. 420 450 340 160 60 110 270 450 660 890 3070

.25 a. 200 130 80 90 130 150 140 100 70 50 40
(.48) b. 200 130 90 130 220 290 270 230 180 130 80

" .50 a. 210 100 50 40 40 40 50 70 90 130 160
(.96) b. 200 100 50 50 50 60 90 140 180 250 320

.75 a. 750 190 150 140 190 200 250 240 240 250 240
(1.44) b. 360 140 70 70 40 50 60 70 80 160 260

• .90 a. 4320 2410 2090 1530 1170 820 650 490 410 340 280
(1.73) b. 330 170 170 100 130 110 170 180 360 470 650

a. MSEf , b. MSE f*

!e_

0 =L,
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Table 4.11. Estimated MSE of Kernel Density Estimators

Life Distribution: W(.5,1), Censoring Distribution: E(l)

Kernel: N(0,1)
(All entries are to be multiplied by 1.0E-04.)

(a) n=50

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55

.10 a. 1390 650 400 900 1670 2370 3090 3540 4040 4580 4930
(.11) b. 1520 780 390 920 1730 2560 3300 3850 4410 5000 5470

.25 a. 820 380 400 350 200 110 60 50 70 130 180
(.29) b. 820 420 590 590 410 220 140 70 60 90 150

.50 a. 550 190 150 130 110 120 90 130 140 120 140
(.69) b. 510 180 150 150 150 310 290 450 590 550 660

.75 a. 680 520 240 210 130 120 110 110 90 90 100
(1.39) b. 530 280 150 120 80 60 90 90 110 140 270

.90 a. 950 650 510 370 350 200 180 150 120 120 100
(2.30) b. 420 150 90 70 80 50 50 30 40 40 30

(b) n=100

.10 a. [ 980 360 270 830 1670 2350 2910 3630 4040 4480 4870
(.11) b. 1090 440 260 830 1730 2520 3120 3960 4400 4900 5330

.25 a. 310 260 260 230 140 80 30 30 50 100 150
(.29) b. 310 310 430 470 330 190 100 40 30 60 110

.50 a. 310 120 90 50 60 80 80 110 110 100 90
(.69) b. 300 120 90 60 130 230 310 470 490 510 520

.75 a. 380 270 00 70 60 50 40 50 40 40 40
(1.39) b. 320 160 80 60 50 50 50 60 90 150 220

.90 a. 670 420 290 230 140 120 100 90 60 50 50
(2.30) b. 200 100 80 60 50 40 40 30 30 20 20
a. MSEf , b. MSE f*

n n"

"6"-

, -_
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. -

Table 4.12. Comparison of f and f * for Small Samples%'"n n

K - Standard Normal h(n) = n- / 5

- Life Distribution: E(5) Censoring Distribution: E(1)
-4 1

(All entries to be multiplied by 10-.) a =6
""f°(t) n (t) 6 t

0*
W.f n n

(t) Bias Variance MSE Bias Variance MSE

10 - 279 11 119 -848 46 118
1900 20 - 639 449 856 - 912 31 114

(2600) 50 - 625 223 619 -815 18 85
11-. 100 - 552 136 440 -707 12 62

10 1552 294 534 175 129 132
1500 20 816 288 362 195 127 131

(14400) 50 84 83 83 129 65 66
:100 - 2 37 37 116 37 39

1 10 242 230 236 - 778 35 96
1 000 20 770 314 373 - 714 44 95

(34700) 50 1435 406 612 - 480 81 104
100 1259 410 568 - 339 86 98

10 -474 6 28 - 497 1 25
500 20 -464 9 30 - 498 0 25

(69300) 50 i -385 48 63 - 496 1 25
100 {-373 41 55 - 489 2 26

'0i

.-

,,9 % 9 % 9 ~ * ~ '. -. * ~ * ~ d* '' ~ V
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Table 4.13. Comparison of f and f for Small Samples
4.n n

K - Standard Normal h(n) = n

Life Distribution: E(1) Censoring Distribution: E(10)
,- 10

(All entries to be multiplied by 10-4.) a

f (t) n fn(t) f*(t)

(t) Bias Variance MSE Bias Variance MSE

10 - 6127 65 3819 - 6242 65 3961
9500 20 - 5913 41 3538 - 6022 41 3668
(513) 50 - 5671 24 3224 - 5771 24 3354

100 - 5463 17 3001 - 5554 17 3101

10 - 3568 66 1339 - 3654 68 1402
7500 20 - 3222 42 1080 - 3297 44 1131

. (2900) 50 - 2779 24 797 - 2832 25 827
100 - 2419 18 602 - 2458 18 622

10 - 865 47 122 - 873 52 128
5000 20 - 562 32 63'- 541 36 65
(6931) 50 - 241 19 25 - 205 19 24

100 - 73 13 14 - 35 14 14

10 383 46 61 408 48 64
2500 20 359 32 45 404 34 51
(1390) 50 274 18 25 325 19 29

100; 203 11 16 240 12 17

10 107 26 27 56 22 22
500 20 60 15 15 29 14 14

(29957) 50 59 8 8 49 8 8
100 37 4 4 36 4 5

L~

S

[ p~p
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*Table 4.14. Comparison of f and f for Small Samples
n n

* - -1/5K - Uniform (-1,1] h(n) - n

Life Distribution: E(5) Censoring Distribution: E(l)

(All entries to be multiplied by 10 a) a

0 1 1n f W f Mn 

nf DBias Variance MSE Bias Variancen2

10 - 322 176 186 - 622 86 04
1 1900 50 - 480 42 65 - 582 34 681
I (2600) 100 - 381 25 39 - 450 21 42
( n300 -186 11 14 -208 10 14

10 1773 840 1153 -103 289 290~
1500 50j 16 148 l 4 8 j 53 122 1221

(14400) 100 4 72 72 1 70 70
30 032 32 4 32

1 0 142 ia e 528 808 65 130
1000 50 1543 1060 1297 I-1044 144 173

(34700) 100 1320 976 1149 -415 159 176

500 50 -376 94 108- 500 0 2.5
(69300) 100 - 398 69 84 486 5 29

j300 -241 179 14 - 13 35

.% -:

......
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P.
Table 4.15. Comparison of f and f for Small Samples

n n

K - Uniform [-1,1] h(n) - n-1/ 5

Life Distribution: E(1) Censoring Distribution: E(10)

(All entries to be multiplied by 10-4) a -1

f W n ftn W f n(f(tt) f t

(t) Bias Variance MSE Bias Variance 1!-

i10 -5570 164 3266 - 5667 158 336'
9500 50 - 5173 61 2736 - 5254 58 281 ,

(513) 100 4987 38 2526 - 5057 37 2595
300 - 4640 18 2171 - 4699 18 2225*
10 332 152 163 361 160 173

5000 50 210 62 66 237 63 69
- (6931) 100 146 42 44 166 43 46

300 70 18 19 86 19 19

10 174 158 161 114 159 160
I 2500 50 i 100 45 46 108 46 47

(1390) 100 56 26 26 62 26 27

300 35 13 13! 42 13 -13

10 25 52 52 - 31 43 3
500 50 21 15 15 2 14 I,.:,(29957) 100 }i 28 8 8 - 6 8 8

300 I 8 3 3 7 3 3

01

-
|. *

** .•%VV.% % *'V% 4
°-* % %ddS%.~* * '.*
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standard normal density seems to be the best choice. Other kernel f r

which closely fit the standard normal (Parzen, 1962) may perform a:; e.c 'ut

were not included in this study. The estimator f is fairly rol,,,
n

respect to the life distribution, and fn performs well near the "center"

of the life distribution regardless of whether the censoring distribution is

.*-. exponential or uniform.

From the results represented by Tables 4.8-4.11, it is evident th.i for

each x, the estimated MSE appears to have at least a relative minimm, i

some value of h. These seem to occur near the values n 1 /2 , n ,,

-1/5
*. - n , although it seems to be difficult to prove this result analytic.1I.y,

as mentioned before. Based on these results and the results represec 'V

Tables 4.1-4.7 that the estimated variances of f increase as h rain
f/un

from n 1 / 5 to n 1 / 2 , the value h a 1/5 or n- 1 / 3 seems to lhc

reasonable choice for the bandwidth in practice.

, The above conclusions indicate that the bias, variance, and mean ;y..

error of f n(t) decrease as n becomes larger, regardless of the life

distribution or censoring distribution. This leads to the conjecture th1;i

the asymptotic results of McNichols and Padgett (1981) hold without the

condition of the Koziol-Green (or proportional hazards) model of random

censorship. Most of the cases simulated do not satisfy the condition of thl

model. An analytical proof of this conjecture, however, would be quite doJ ,i. i .

The simulation results represented by Tables 4.8-4.11 indicate that, with,

respect to estimated mean squared error, f* and f behave similarly a,;

0 n n

the bandwidth values vary. The simulations (Tables 4.12-4.15) also indicate

that the Blum-Susarla estimator f and the estimator f perform about the
n n

same with respect to bias, variance, and mean squared error when a = P(o)nccei.ored
4; ,

observation) is larger than 0.5. When a < 1/2, f tends to have sma)le)"
n

'p
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variance and mean squared error than f This can probably be explained

by noting that f depends upon having a good estimate of the censoring
n

'- survival function I-H in the denominator, and when there is a large portion

of the observations which are censored, the denominator H of (3.1) would
n

give a good estimate of 1-H. Hence, when a is small, fn would generally

-.. provide a better density estimate than f with respect to smaller variance
n

and mean squared error.
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